

Carl D. Habben

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, D-3400 Göttingen

Eingegangen am 16. Mai 1988

3-Alkyl-3*H*-1,2,3-diselenaborole 1 reagieren mit Schwefeldiimiden unter Bildung der bisher unbekannten 3-Alkyl-2,3-dihydro-1,2,3selenazaborole 2. Die unerwartete Substitution des Bor-ständigen Stickstoffs durch Schwefel führt zu den 3-Alkyl-3*H*-2,1,3-Thiaselenaborolen 3. Die ¹H-, ¹¹B-, ¹³C-, ¹⁵N-, ²⁹Si-, ⁷⁷Se-NMR- und Massenspektren werden diskutiert.

Synthesis and Characterization of New Se- and S-Containing Boron Heterocycles: 2,3-Dihydro-1,2,3-selenazaboroles and 3H-2,1,3-Thiaselenaboroles

3-Alkyl-3*H*-1,2,3-diselenaboroles 1 react with sulfur diimides by formation of the hitherto unknown 3-alkyl-2,3-dihydro-1,2,3-selenazaboroles 2. The unexpected substitution of boron-bonded nitrogen by sulfur leads to the 3-alkyl-3*H*-2,1,3-thiaboroles 3. The ¹H-, ¹¹B-, ¹³C-, ¹⁵N-, ²⁹Si-, ⁷⁷Se-NMR, and mass spectra are discussed.

$$H_{1} = H_{1} = H_{2} = H_{2$$

2,3-dise-Die Bildung von 4,5-Diethyl-2,3-dihydro-3-methyl-2-trimethylsilyl-1,2,3-selenazaborol konnte nicht nachgewiesen werden.

Die Umsetzung von 1a mit *tert*-Butyltrimethylsilylschwefeldiimid wird dagegen von einer Wanderung der Trimethylsilyl-Gruppe begleitet. Dies führt zur Einschiebung der

$$1 + R' - N = S = N - Si(CH_3)_3 \xrightarrow{- se} (5)$$

$$H_5C_2 \xrightarrow{C} B^R + Polykondensate$$

$$H_5C_2 \xrightarrow{C} Se^N - S^N \xrightarrow{R'} + Polykondensate$$

$$H_5C_2 \xrightarrow{C} Se^N - S^N \xrightarrow{Si(CH_3)_3} (CH_3)_3 \xrightarrow{- se} (5)$$

$$2d, f \xrightarrow{R} \xrightarrow{R'} (2d - CH_3 - t - C_4H_9)$$

$$2e - CH_3 - Si(CH_3)_3 \xrightarrow{- se} (2H_3 - Si(CH_3)_3)$$

Aus 3H-1,2,3-Diselenaborolen 1 (R = CH₃, n-C₄H₉) und organischen Isocyanaten sind 2,3-Dihydro-4H-1,3,2-selenazaborin-4-one¹⁾ zugänglich, in denen die Elemente Selen und Stickstoff über Bor gebunden vorliegen.

Neue Untersuchungen sollten klären, ob Moleküle vom Typ 1 geeignete Ausgangsverbindungen zur Synthese weiterer Se-N-B-Heterocyclen sind.

Ergebnisse und Diskussion

Die Umsetzung von 3,5-Diethyl-1,2,4,3,5-triselenadiborolan mit 3-Hexin führt zum 3,4,5-Triethyl-3*H*-1,2,3-diselenaborol (**1b**). Sowohl **1a** als auch **1b** reagieren mit Di-*tert*butylschwefeldiimid unter Insertion einer $t-C_4H_9N$ -Gruppe, Abstraktion eines Se-Atoms und Bildung der bisher nicht beschriebenen 2,3-Dihydro-1,2,3-selenazaborole **2a**, **b**.

tert-Butyl- und Isobutyltrimethylsilylschwefeldiimid reagieren mit 1b bzw. mit 1a ebenso zu 2b und 2c.

Chem. Ber. 121, 1967-1970 (1988) © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1988 0009-2940/88/1111-1967 \$ 02.50/0

umgelagerten, reduzierten Schwefeldiimid-Gruppierung Ring-N-S-N(R)Si(CH₃)₃ und Bildung des 2-Aminosulfanyl-substituierten 2,3-Dihydro-1,2,3-selenazaborols **2d**. Bis-(trimethylsilyl)schwefeldiimid reagiert analog zu **2e**, **f**.

Die Reaktion von **2a**, **b** mit elementarem Schwefel erfolgt nicht unter Chalcogen-Austausch, sondern, offenbar wegen der relativen Labilität der Se – N-Bindung², unter Substitution der Bor-ständigen $t-C_4H_9N$ -Gruppierung durch ein Schwefel-Atom und Bildung der bisher unbekannten 3*H*-2,1,3-Thiaselenaborole (**3a**, **b**):

Spektren

Die spektroskopischen Daten sind in Tab. 1 zusammengefaßt.

Die relative Intensität des Molekülpeaks im Massenspektrum (EI) des 3-Ethyl-substituierten 2-Butylselenazaborols **2b** liegt mit 45% deutlich über den für die entsprechenden 3-Methyl-Derivate gefundenen Werten (**2a**: 19%, **2c**: 7%). Der gleiche Effekt wird bei den 2-Sulfanyl-substituierten 2,3-Dihydro-1,2,3-selenazaborolen beobachtet (**2f**: 11%, **2d**: 4%, **2e**: 2%) bei denen die relativen Intensitäten von M⁺ im Vergleich zu denen der 2-*tert*-Butyl-Derivate wohl durch Einführung der N-S-N-Sequenz herabgesetzt wird; ebenso **3a**: 49%, **3b**: 63%. Die Basispeaks werden von olefinischen Fragmenten (**2a**-c, **3a**, b: m/z = 41) bzw. bei den 2,3-Dihydro-2-selenazaborolen **2d**-f vom Fragment m/z = 73 gebildet ([Si(CH₃)₃]⁺), die relative Intensität von m/z = 41 liegt beim 3-Ethyl-Derivat **2f** mit 16% niedriger als bei den 3-Methyl-Derivaten (**2d**: 44%, **2e**: 29%).

Die beobachteten ¹H-NMR-Signale stehen durch ihre Lage und Intensität in Einklang mit den Molekülmodellen: **2e** und **2f** weisen im Bereich für Si(CH₃)₃ nur je ein Singulett der relativen Intensität [18H] auf. Unerwartet zeigt das ¹H-NMR-Spektrum von **2d** die Nichtäquivalenz der Protonen einer Methylen-Gruppe. Die Gleichwertigkeit der chemischen Umgebung der Methylen-Protonen wird offenbar durch räumliche Annäherung der nicht linearen, gewinkelten, unsymmetrisch substituierten Aminosulfanyl-Gruppe aufgehoben. Beim Ersatz der *tert*-Butyl-Gruppe durch R' = Si(CH₃)₃ wird dieser Effekt nicht mehr beobachtet. Der Versuch, das **2d** entsprechende 3-Ethyl-Derivat herzustellen, führte entsprechend Gl. 4 zu **2b**.

Die ¹³C-NMR-Signale, welche dem doppelt gebundenen Kohlenstoff zugeordnet werden, verschieben sich nach Ersatz der t-C₄H₉N-Gruppe in **2a**, **b** durch S – N(R)Si(CH₃)₃ in **2d**-**f** für B-C= um 2 ppm zu höherem, für Se-C= um 6 ppm zu tieferem Feld. Die Substitution der t-C₄H₉N-Gruppe in **2a**, **b** durch S in **3a**, **b** führt für B-C= und Se-C= zu Tieffeldverschiebungen von 6 bzw. 20 ppm. Kopplungen mit dem Ringglied Selen^{3,4)} ermöglichen eine eindeutige Signalzuordnung. Die Größe der Kopplungskonstanten ändert sich nicht bei Variation der Bor-ständigen ($\mathbf{R} = CH_3, C_2H_5$) bzw. der Sulfanyl-Substituenten [$\mathbf{R}' = t$ - C_4H_9 , Si(CH₃)₃]. Dagegen wird der Übergang von den 2*tert*-Butyl-2,3-dihydro-1,2,3-selenazaborolen **2a**, b zu den 2-Sulfanyl-Derivaten **2d**-f bzw. zu den 3H-2,1,3-Thiaselenaborolen **3a**, b von Änderungen der Kopplungskonstanten begleitet.

	R	x	¹ J _{Se,C-5} [Hz]	² J _{Se,C-5} ' [Hz]	¹ J _{Se,C-5} - [Hz]
2a	сн₃	N(t-C ₄ H ₉)	106.8	23.0	8.7
2Ь	C ₂ H ₅	N(<i>t</i> -C ₄ H ₉)	106.4	22.5	9.4
2d	СН3	$NSN(t-C_4H_9)[Si(CH_3)_3]$	111.3	18.9	8.0
2e	СН₃	$NSN[Si(CH_3)_3]_2$	111.4	18.9	7.9
2f	C ₂ H ₅	$NSN[Si(CH_3)_3]_2$	111.2	18.5	8.3
3a	СН₃	S	125.8	24.8	8.9
3ь	С ₂ Н ₅	S	125.5	24.8	8.0

Diese Werte korrelieren gut mit früheren Ergebnissen¹⁾. Kleinere Kopplungskonstanten wurden über die Se-N-Bindung in 2 gefunden.

Verglichen mit den ¹¹B-NMR-Signalen der 2-Butyl-2,3dihydro-1,2,3-selenazaborole (2a - c), sind die der Sulfanyl-Derivate 2d - f um ca. 4 ppm tieffeldverschoben. Der Ersatz von N durch S führt zu einer weiteren Tieffeldverschiebung⁵⁾ um 20 ppm.

¹⁵N-NMR-spektroskopisch sind in **2e** zwei Signale registrierbar, von denen das zum tiefen Feld verschobene ($\delta = -244.7$) aufgrund der von **2a** ($\delta = -238.2$) und **2b** ($\delta = -237.2$) gewonnenen Daten dem Bor-ständigen N zugeordnet wird.

Die ²⁹Si-NMR-Spektren von **2e, f** beweisen durch die Äquivalenz der Si-Kerne die Bindung beider Si(CH₃)₃-Gruppen an ein Stickstoff-Atom und bestätigen damit die Molekülstruktur.

Das ⁷⁷Se-NMR-Spektrum des 3*H*-1,2,3-Diselenaborols **1a** weist zwei Signale im Intensitäts-Verhältnis 1:1 auf, von denen das verbreiterte bei $\delta = 432.9$ dem Bor-ständigen Selen-Atom⁶⁾ zugeordnet wird, bei dessen Ersatz durch Schwefel in **3b** eine Tieffeldverschiebung um 80 ppm beobachtet wird. Verglichen mit den Werten der 2,3-Dihydro-2-sulfanyl-1,2,3-selenazaborole liegen die der 2-*tert*-Butyl-Derivate um 90 bis 100 ppm hochfeldverschoben.

Experimenteller Teil

C-, H-Bestimmungen: Mikroanalytisches Laboratorium Göttingen. – NMR-Spektren (Standard); jeweils in CDCl₃: ¹H, ¹³C, ²⁹Si (jeweils TMS, int.), ¹¹B [BF₃ · O(C₂H₅)₂, ext.], ⁷⁷Se [Se(CH₃)₂, ext.], ¹⁵N [H₃CNO₂, ext.]; Bruker AM 250. – Massenspektren: 70 eV, Varian MAT-CH-5-Spektrometer. – Molekülpeaks sind durch Feldionisation gesichert. - Die Ausgangsverbindungen 4,5-Diethyl-3-methyl-3H-1,2,3-diselenaborol⁶, 3,5-Diethyl-1,2,4,3,5-triselenadiborolan (in Analogie zum Dimethyl-Derivat⁷), Di-tert-butyl-⁸), Bis(trimethylsilyl)-9, Isobutyltrimethylsilyl- und tert-Butyltrimethylsilylschwefeldiimid¹⁰⁾ wurden nach Literaturangaben hergestellt. - Alle Reaktionen wurden unter Ausschluß von Feuchtigkeit unter N₂ und in getrockneten Lösungsmitteln durchgeführt. - Bei den Polykondensaten handelt es sich um dunkle, hochviskose bis feste, schwerlösliche und bis 160 °C i. Hochvak. nicht flüchtige Destillationsrückstände, die jedoch nicht näher untersucht wurden. -Die präparativen und analytischen Daten sind in Tab. 2 zusammengefaßt.

3,4,5-Triethyl-3H-1,2,3-diselenaborol (1b): Eine Reaktionsmischung aus 15.8 g (50.0 mol) 3,5-Diethyl-1,2,4,3,5-triselenadiborolan und 8.22 g (0.10 mol) 3-Hexin in 150 ml CCl_4 wurde 3 d unter Rückfluß gekocht. Der Abtrennung des Lösungsmittels folgte die Produktdestillation i. Hochvak.

Tab. 1. Spektroskopische Daten (MS, ¹H-, ¹¹B-, ¹³C-, ¹⁵N-^{a1}, ²⁹Siund ⁷⁷Se-NMR) der dargestellten Verbindungen

Verb.	MS m/z M ⁺ /Int. [Basispeak]	¹ Η δ[ppr	n]	Int.	¹³ C δ[ppm]	¹¹ B ²⁹ Si ⁷⁷ Se 8	ð[ppm]
16	282/21 [55]	CH_3 $B - CH_2 - CH_3$ CH_3 $B - CH_2$ CH_2 CH_2 $B - C =$ $Se - C =$	1.03 (t) 1.24 (t) 1.32 (t) 1.37 (q) 2.43 (q) 2.79 (q)	[3H] [3H] [3H] [2H] [2H] [2H]	15.63 11.59 15.84 16.96 25.27 27.67 148.9 179.12	72.7 432.9 608.0	(1:1)
2a	259/19 [41]	$B - CH_3$ CH_3 $t - C_4 H_9$ CH_2 CH_2 CH_2 B - C = Se - C =	0.64 (s) 0.97 (t) 1.22 (t) 1.52 (s) 2.26 (q) 2.70 (q)	[3H] [3H] [3H] [9H] [2H] [2H]	3.7 15.35 16.14 32.77 22.60 23.58 144.0 157.92	41.2 - 954.6	
26	273/45 [41]	$\begin{array}{c} CH_{3} \\ B-CH_{2}-CH_{3} \\ CH_{3} \\ t-C_{4}H_{9} \\ CH_{2} \\ CH_{2} \\ C(H_{2}) \\ C(CH_{3})_{3} \\ B-C = \\ Se-C = \end{array}$	1.02 (t) 1.20 (t) 1.23 (t) 1.54 (s) 2.27 (q) 2.73 (q)	[3H] [3H] [3H] [9H] [2H] [2H]	15.84 10.35 16.13 33.23 22.25 23.19 57.39 144.0 159.43	42.1 949.8	
2c	259/7 [41]	$B - CH_3$ $CH(CH_3)_2$ CH_3 CH_3 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_3 CH_2 CH_3 CH	0.44 (s) 0.90 (d) 0.99 (t) 1.21 (t) 1.87 (sp) 2.30 (q) 2.73 (q) 3.36 (d)	[3H] [6H] [3H] [3H] [1H] [2H] [2H] [2H]	0.2 19.99 15.32 16.29 56.59 22.90 23.54 31.77 142.10 160.10	42.7 _ 941.5	
2 d	378/4 [73]		$\begin{array}{l} 0.41 \ (s) \\ 0.72 \ (s) \\ 0.95 \ (t) \\ 1.21 \ (t) \\ 1.33 \ (s) \\ 2.25 \ (q) \\ 2.68 \ (H_Aq) \\ 2.72 \ (H_Bq) \end{array}$	[9H] [3H] [3H] [3H] [9H] [2H] [2H]	5.18 2.3 15.27 16.07 31.44 23.27 23.47 60.61 141.8 164.63	45.9 12.6 1038.5	

Chem. Ber. 121, 1967-1970 (1988)

Verb.	MS m/z M ⁺ /Int. [Basispeak]	^ι Η δ[ppn	n]	Int.	¹³ C δ[ppm]	¹¹ Β ²⁹ Si ⁷⁷ Se δ[ppm]
2e	394/2 [73]	Si(CH ₃) ₃ $B - CH_3$ CH ₃ CH ₃ CH ₂ CH ₂ B - C = Se - C =	0.27 (s) 0.68 (s) 0.96 (t) 1.21 (t) 2.26 (q) 2.71 (q)	[18H] [3H] [3H] [3H] [2H] [2H]	2.61 b) 15.27 16.02 23.24 23.49 141.5 165.17	46.7 13.9 1058.7
2f	408/11 [73]	Si(CH ₃) ₃ CH ₃ $B - CH_2 - CH_3$ CH ₃ $B - CH_2 - CH_3$ CH ₂ CH ₂ B - C = Se - C = Se - C = Se - C = Si + C + Si + Si	0.28 (s) 0.98 (t) 1.00 (t) 1.21 (t) 1.27 (q) 2.29 (q) 2.72 (q)	[18H] [3H] [3H] [3H] [2H] [2H] [2H]	2.60 15.71 10.12 16.06 10.4 23.34 23.41 141.4 166.54	47.1 14.0 1050.8
3a	220/49 [41]	$B - CH_3$ CH_3 CH_2 CH_2 CH_2 B - C = Se - C =	0.92 (s) 1.03 (t) 1.31 (t) 2.44 (q) 2.82 (q)	[3H] [3H] [3H] [2H] [2H]	5.3 15.29 16.01 24.57 26.22 147.6 177.52	65.1 - 690.84
3b	234/63 [41]	CH_3 $B - CH_2CH_3$ CH_3 $B - CH_2$ CH_2 CH_2 $B - C =$ $Se - C =$	1.03 (t) 1.21 (t) 1.31 (t) 1.44 (q) 2.42 (q) 2.81 (q)	[3H] [3H] [3H] [2H] [2H] [2H]	15.47 10.87 16.08 15.1 24.46 26.18 147.2 177.83	67.3 - 689.4

^{a)} 2a: -238.2; 2b: -237.2; 2e: -244.7, -316.3. - ^{b)} Nicht registrierbar.

Tab. 2. Präparative und analytische Daten der dargestellten Verbindungen

Verb.	Ausbeute [g/%]	Sdp. bei 10 ⁻² mbar [°C]	Summenformel Molmasse (MS)	Analysen C H
1	9.8/70	62	$C_8H_{15}BSe_2$ 278 94 282	Ber. 34.32 5.40 Gef. 34.42 5.27
2a	1/39	68	$C_{11}H_{22}NBSe$ 258.07 259	Ber. 51.19 8.59 Gef. 52.37 8.53
2 b	0.9/33 (A) 0.3/11 (B)	82	C ₁₂ H ₂₄ BNSe 272.10 273	Ber. 52.97 8.89 Gef. 53.30 8.92
2c	0.4/16	66	C ₁₁ H ₂₂ BNSe 258.07 259	
2 d	1.5/40	108	C ₁₄ H ₃₁ BN ₂ SSeSi 377.34 378	Ber. 44.56 8.28 Gef. 45.30 8.52
2e	1.4/36	112	C ₁₃ H ₃₁ BN ₂ SSeSi ₂ 393.42 394	Ber. 39.69 7.94 Gef. 39.57 7.60
2f	1.2/29	126	C ₁₄ H ₃₃ BN ₂ SSeSi ₂ 407.45 408	Ber. 41.27 8.16 Gef. 41.08 7.33
3a	0.7/64	42	C ₇ H ₁₃ BSSe 219.02 220	Ber. 38.39 5.98 Gef. 38.43 6.14
3b	0.6/51	48	C ₈ H ₁₅ BSSe 233.04 234	Ber. 41.23 6.49 Gef. 42.07 6.58

4.5-Diethyl-2,3-dihydro-1,2,3-selenazaborole $2\mathbf{a} - \mathbf{f}$: Zu einer Lösung von 2.66 g (10 mmol; für $2\mathbf{a}$, $2\mathbf{c} - \mathbf{e}$) $1\mathbf{a}$ bzw. 2.79 g (10 mmol; für $2\mathbf{b}$, $2\mathbf{f}$) $1\mathbf{b}$ in 100 ml CCl₄ wurden 1.74 g Di-*tert*-butyl- [für $2\mathbf{a}$, $2\mathbf{b}$ (Variante A)], 2.66 g Isobutyltimethylsilyl (für $2\mathbf{c}$), 2.66 g *tert*-Butyltrimethylsilyl- (für $2\mathbf{d}$), 2.07 g Bis(trimethylsilyl)- (für $2\mathbf{e}$, $2\mathbf{f}$) -schwefeldiimid (jeweils 10 mmol), gelöst in 50 ml CCl₄, getropft. Nach Erhitzen zum Rückfluß (3 d) folgten Abtrennung des Solvens und Produktdestillation i. Hochvak.

2-tert-Butyl-4,5-diethyl-2,3-dihydro-3-methyl-1,2,3-selenazaborol [2b (Variante B)]: Eine Lösung von 2.79 g (10 mmol) 1b in 100 ml CCl₄ wurde tropfenweise mit einer Lösung von 1.9 g (10 mmol) tert-Butyl-trimethylsilylschwefeldiimid in 50 ml CCl₄ versetzt. Reaktionszeit: 3 d Erhitzen zum Rückfluß. Aufarbeitung durch Abtrennung des Solvens und Produktdestillation i. Hochvak.

3H-2,1,3-Thiaselenaborole 3a,b: 1.29 g (5 mmol für 3a) bzw. 1.36 g (5 mmol für 3b) 2b und 1.00 g Schwefel wurden 8 h auf 130°C erhitzt. Aufarbeitung: Destillation i. Hochvak.

CAS-Registry-Nummern

1a: 103526-14-3 / 1b: 115705-96-9 / 2a: 115705-97-0 / 2b: 115705-**12.** 10526-01-15 / 05 - 115706-01-2 / 26: 115706-01-9 / 2f: 115706-02-0 / 3a: 115706-04-2 / 3b: 115706-05-3 / tert-H₉C₄-N = S = NSi(CH₃)₃: 55712-30-6 / tert-H₉C₄N = S = N-tert-C₄H₉: 2056-74-8 / iso-H₉C₄N = S = NSi(CH₃)₃: 115706-06-4 / (CH₃)₃Si-N = S = NSi(CH₃)₃: 18156-25-7 / H₅C₂C = CC₂H₅: 928-49-4 / ⁷⁷Se:

14681-72-2 / ¹¹B: 14798-13-1 / ²⁹Si: 14304-87-1 / ¹⁵N: 14390-96-6 / 3,5-Diethyl-1,2,4,3,5-triselenaborolan: 115706-03-1

- ¹⁾ C. Habben, A. Meller, Chem. Ber. 119 (1986) 1189.
- ²⁾ K. L. Weber, Dissertation, Universität Frankfurt/M. 1984.
- ³⁾ H. Meier, J. Zountsas, O. Zimmer, Z. Naturforsch., Teil B, 36 (1981) 1017.
- ⁴⁾ D. J. Gulliver, E. G. Hope, W. Levason, S. G. Murray, D. M. Potter, G. L. Marshall, J. Chem. Soc., Perkin Trans. 2, 1984, 429.
- ⁵⁾ H. Nöth, B. Wrackmeyer, Nuclear Magnetic Resonance, Spectroscopy of Boron Compounds, Springer, Berlin-Heidelberg-New York 1978.
- ⁶⁾ C. Habben, A. Meller, *Chem. Ber.* **119** (1986) 9. ⁷⁾ W. Siebert, F. Riegel, *Chem. Ber.* **106** (1973) 1012.
- ⁸⁾ D. H. Clemens, A. J. Bell, J. L. O'Brien, Tetrahedron Lett. 1965, 1487.
- ⁹⁾ O. J. Scherer, R. Wies, Z. Naturforsch., Teil B, 25 (1970) 1486.
- ¹⁰⁾ I. Ruppert, U. Bastian, R. Appel, Chem. Ber. 108 (1975) 2329.

[127/88]